Invertir arbol binario

Invertir arbol binario

Invertir el árbol binario java

Invertir un árbol binario (o invertirlo) es una de las preguntas más habituales en las entrevistas de muchas empresas. En este artículo, veremos en detalle cómo se puede entender y abordar esta tarea de invertir un árbol binario utilizando la recursión, la pila y la cola.

Invertir un árbol binario es producir otro árbol binario como salida donde todos los nodos de la izquierda y la derecha de todos los nodos que no son hojas del árbol binario original se intercambian. El árbol binario invertido también se conoce como árbol espejo. Por ejemplo:

En el fragmento de código anterior, la función de inversión comprueba primero si el árbol está vacío. Si no lo está, primero intercambia los dos hijos de la raíz y luego intercambia recursivamente los dos subárboles hasta que la raíz tenga algún valor. Una vez que la raíz es NULL, se detienen las llamadas recursivas.

En la función de inversión, se crea una pila en la que se introduce primero la raíz. A continuación, se extrae el elemento superior de la pila y se envía a través de la función de intercambio y los nodos resultantes de la derecha y la izquierda se introducen en la pila en el mismo orden. Esto se repite hasta que la pila esté vacía.

Combinar el árbol binario

Explicación : Se puede observar que el puntero izquierdo de la raíz comenzó a apuntar hacia el hijo derecho y el puntero derecho hacia el hijo izquierdo y una condición similar se nota para todos los nodos sub raíz.La estructura de nodos para el BST pasado a su función seráclase TreeNode

  Cuento del arbol

La estructura de los nodos del BST pasada a la función será la clase TreeNode. Solución recursivaLa idea clave aquí es darse cuenta de que para invertir un árbol binario sólo necesitamos intercambiar los hijos y resolver recursivamente los dos subproblemas más pequeños (el mismo problema pero para un tamaño de entrada menor) del subárbol izquierdo y del derecho. Esto se parece a la idea del recorrido de preorden. Los pasos a seguir son :Pseudo Code// Función para invertir un Árbol binario dado utilizando el preorder traversal

Análisis de ComplejidadEn el enfoque anterior, estamos recorriendo cada nodo del árbol sólo una vez. Complejidad de tiempo: O(n)La complejidad espacial de este algoritmo es proporcional a la profundidad máxima del árbol de recursión generado que es igual a la altura del árbol (h). Complejidad espacial: O(h) para la pila de llamadas de recursión, donde h es la altura del árbol.Ideas críticas para pensar2. Utilizar el Recorrido Iterativo de PreordenAquí se utiliza un Recorrido Iterativo de Preorden para recorrer el árbol utilizando una pila LIFO. Para convertir los procedimientos recursivos en iterativos, necesitamos una pila explícita durante la implementación. Solución PasosEl hijo derecho es empujado antes que el hijo izquierdo para asegurar que el subárbol izquierdo es procesado primero.Código Pseudo// Función Iterativa para invertir un Árbol binario dado usando una pila

  Pokemon arbol

Árbol binario completo

Tengo la sensación de que la pregunta no se refiere realmente a la codificación en pizarra o a la resolución de problemas de grafos. Se trata de una tarea claramente ambigua. Tal vez la intención era forzar al entrevistado a demostrar cómo comunicaba al entrevistador que necesitaba más información sobre el problema antes de empezar.Fingir que entiendes o asumir ciegamente lo que el entrevistador quería decir es más una bandera roja para mí que requerir unas cuantas rondas de aclaración.En mi opinión, un entrevistado ideal comunicaría que no entiende completamente los requisitos y posiblemente ofrecería un breve conjunto de posibles interpretaciones. Una vez que el entrevistador haya aclarado, mi entrevistado ideal volvería a aclarar para demostrar su competencia y verificar su nueva interpretación de los requisitos antes de continuar.

En este caso, se trata de invertir el árbol binario, de modo que se obtenga el elemento más grande iterando por la rama izquierda hasta la parte inferior del árbol. Para ello, hay que recorrer primero el árbol a lo ancho, intercambiando los punteros izquierdo y derecho a medida que se avanza.

Invertir árbol binario javascript

ProblemaEl árbol binario es una estructura de datos y una de las formas más simples de árboles. Es posible que hayas oído hablar de gente que se queja [1] de que durante las entrevistas se les pide que inviertan un árbol binario. Puede sonar como algo difícil, pero en este artículo te mostraré una solución realmente simple usando recursión (ver este artículo para más recursión en Python). Invertir un árbol significa básicamente cambiar de lugar a los hijos de la derecha y de la izquierda de cada nodo. El árbol resultante se verá como un espejo vertical de la entrada. Por lo tanto, si sabes cómo representar un árbol dentro de un código, no te atascarás añadiendo sólo un par de líneas extra invocando la función recursiva.

  Arbol de guarumo

Estructuras de datosEn primer lugar necesitamos una estructura de datos que represente un árbol y dos funciones de ayuda: generate_tree para crear un árbol de destino con el que pensamos trabajar eprint_tree para visualizar el resultado y verificar que nuestra solución funciona según lo previsto.

Para representar un árbol necesitamos definir una sola clase que corresponde a un nodo. Cada nodo almacena algún valor/identificador así como punteros a sus hijos o None en el caso de los nodos hoja. Una variable arbitraria asignada al nodo raíz se declarará como un árbol dentro de nuestro código.

Esta web utiliza cookies propias para su correcto funcionamiento. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad